
1

Survey of Benchmark Contamination Detection Techniques in Large Language Models

Luke Dagnillo, Ashley Tittelbaugh

I. INTRODUCTION

Benchmark data contamination occurs when a Large
Language Model (LLM) is evaluated on a benchmark
that it has seen—at least in part—during its training
phase. As LLMs continue to grow in both the number of
parameters and the volume of training data, benchmark
contamination becomes increasingly prevalent, impact-
ful, and difficult to detect [?], [?]. This issue is further
exacerbated when the contamination occurs through sub-
tle paraphrasing, translations, or synthetic reformulations
of benchmark data [?], [?]. Such overlap can lead to
artificially inflated benchmark scores, which in turn
may mislead users and researchers, skewing perceptions
of model capabilities and influencing future research
directions [?], [?].

To address this challenge, researchers have proposed
a wide range of benchmark contamination detection
algorithms. However, no current method offers a perfect
solution. This paper surveys and categorizes the exist-
ing detection approaches and highlights their respective
trade-offs. In addition, we implement and compare two
representative algorithms, TS-Guessing [?] and Local
Order Quiz [?], on distilled reasoning models. Drawing
from both experimental results and an extensive literature
review, we comment on the strengths, limitations, and
open challenges in the field of benchmark contamination
detection.

II. CATEGORIES OF DETECTION ALGORITHMS

Due to the wide variety of models and datasets,
there is no one-size-fits-all solution to benchmark data
contamination. This survey examined 20 distinct algo-
rithmic approaches for detecting and evaluating dataset
contamination, which were categorized into three broad
classes: Behavioral Probing, Similarity-Based Detection,
and Statistical Signal Analysis. Each of these categories
reflects a different trade-off between access require-
ments, detection granularity, and precision. Behavioral
probing methods infer contamination from a model’s
behavior when exposed to modified inputs [?], [?],
[?]. Similarity-based approaches identify overlap with
pretraining data using token-level or embedding-level
similarity [?], [?]. Statistical signal analysis relies on
internal model signals—such as confidence, entropy, or
distributional shifts—to uncover signs of memorization
[?], [?], [?].

1. Behavioral Probing

Behavioral probing detection algorithms aim to ex-
pose contamination by observing how a model behaves
under altered or masked input conditions. The core
intuition is that models are more likely to produce
correct completions or predictions when exposed to
familiar patterns—such as benchmark questions seen
during training—even when essential input components
are perturbed [?]. These methods typically require access
only to model outputs, making them well-suited for use
with proprietary or closed-source models where embed-
dings and training corpora are not publicly available
[?], [?]. This flexibility allows behavioral probing to be
adapted across a wide range of models and benchmark
types.

However, many of these algorithms require human-
designed or model-assisted perturbations for each indi-
vidual test instance, making them more applicable to
instance-level rather than large-scale benchmark-level
detection [?]. Additionally, behavioral probing tech-
niques may suffer from a higher false positive rate com-
pared to other approaches, as they can conflate genuine
reasoning ability with memorization. Their reliability is
also sensitive to prompt design, semantic interpretation,
and stochasticity in model outputs [?].

TABLE I
BEHAVIORAL PROBING DETECTION ALGORITHMS

Algorithm Description
TS-Guessing [?] Masks key parts of a question or answer

and prompts the model to guess the missing
information.

Instance Local
Order Quiz [?]

Tests if a model can predict the position of
a sample in a known sequence.

Canonical
Order Testing
[?]

Measures whether the model prefers canon-
ical ordering over randomly shuffled bench-
mark instances.

Guided Instruc-
tion [?]

Embeds dataset names and instance context
in prompts.

DCQ [?] Presents one original instance and several
distractors generated by GPT-4.

CAP (PCR-
based detection
only) [?]

Measures performance consistency ratio
(PCR) under logically or semantically mod-
ified inputs.

2. Similarity-Based Detection

Similarity-based detection algorithms aim to identify
contamination by measuring similarity, either lexical or
semantic, between benchmark examples and a model’s



2

training corpus or generated outputs. The core intuition
behind these approaches is that if a benchmark instance,
whether exact or paraphrased, has appeared during train-
ing, the model’s embeddings and outputs will exhibit
greater similarity to that instance than would be expected
by chance [?], [?]. This enables researchers to detect
contamination not only through exact matches, but also
through semantically similar content, capturing a broader
notion of learned knowledge.

While this generalization introduces the possibility
of false negatives, due to the inherently fuzzy nature
of semantic similarity, it more accurately reflects what
the model has learned [?]. These methods typically
require some degree of access to the model, such as
its embedding space or training data proxies, which
distinguishes them from black-box approaches [?]. This
additional access contributes to higher precision and
accuracy compared to methods that rely solely on model
outputs.

However, the retrieval and semantic evaluation stages
in similarity-based methods are often computationally
intensive [?]. Despite this, they are well-suited for large-
scale audits, as they can be scaled to evaluate contami-
nation at the benchmark level rather than being limited
to individual instances.

TABLE II
SIMILARITY-BASED DETECTION ALGORITHMS

Algorithm Description
LLM
Decontaminator
[?]

Retrieves top-k semantically similar training
examples via embedding similarity.

Common Crawl
Matching [?]

Uses search engine APIs and the Common
Crawl index to find overlaps between bench-
mark instances and public web data.

Token
Completion
Overlap Score
[?]

Prompts the model with partial inputs and
compares the overlap between generated
completions and reference answers to detect
contamination.

Guided ICL
with BLEURT
[?]

Uses instructional prompts and BLEURT
(or GPT-4) to measure semantic similarity
between model outputs and benchmark ex-
amples.

3. Statistical Signal Analysis

Statistical Signal Analysis contamination detection
techniques use internal model statistical patterns, such as
log-probabilities, entropy, confidence scores, or distribu-
tional shifts, associated with benchmark inputs or out-
puts. These methods are based on the observation that if
a model has encountered benchmark data during training,
it will exhibit abnormal statistical behavior, such as lower
entropy or higher token likelihoods, when processing
those inputs compared to truly unseen examples [?], [?].

While these techniques often require white-box access
to the model, such as logits or internal embeddings,

they offer high precision in detecting subtle signals of
memorization [?], [?]. In addition, their reliance on
internal statistics rather than external corpora makes
them computationally efficient and highly scalable for
large-scale or benchmark-level detection [?], [?].

TABLE III
STATISTICAL SIGNAL ANALYSIS DETECTION ALGORITHMS

Algorithm Description
PaCoST [?] Uses paired-sample t-tests to compare

model confidence on original versus
rephrased instances.

LogProber [?] Fits exponential decay curves to token-level
log-probabilities.

(KDS) [?] Measures shifts in kernel similarity matrices
of model embeddings before and after fine-
tuning.

CDD [?] Compares entropy distributions of model
outputs on original and perturbed inputs to
detect memorization artifacts.

Min-K% Proba-
bility [?]

Evaluates the lowest k% token probabilities
across the benchmark.

LNE Score [?] Computes length-normalized entropy to
identify unusually confident model outputs.

III. METHODOLOGY

We expand this survey by implementing and
testing two benchmark contamination detection
algorithms—TS-Guessing [?] and Local order Quiz
[?]—on the AIME-2024 (American Invitational
Mathematics Examination) [?] and MMLU (Massive
Multitask Language Understanding) [?] high school
mathematics datasets. These contamination tests were
conducted using two open-source reasoning models:
DeepSeek-R1-Distill-Qwen-14B [?] and Skywork-O2-
Open-Llama-3.1-8B [?]. This application is relatively
novel, as most contamination detection algorithms have
predominantly been evaluated on casual models to date.

A. Models

1) DeepSeek-R1-Distill-Qwen-14B: DeepSeek-
R1-Distill-Qwen-14B is a distilled version of the
Qwen2.5-14B [?] model, fine-tuned using reasoning
data generated by DeepSeek-R1 to enhance its
performance in tasks requiring logical inference and
problem-solving abilities. [?]

2) Skywork-O2-Open-Llama-3.1-8B: Skywork-o1-
Open-Llama-3.1-8B is an 8-billion-parameter language
model developed by Kunlun Inc. It adds reasoning to
the Llama-3.1-8B architecture.

The development of Skywork-o1-Open-Llama-3.1-8B
involved a three-stage training process:

• Reflective Reasoning Training: Generate high-
quality, diverse data, followed by continuous pre-
training and supervised fine-tuning. Dataloop



3

• Reinforcement Learning for Reasoning Capabil-
ities: Enhance reasoning by capturing the influence
of intermediate reasoning steps on final outcomes.

• Reasoning Planning: Search for optimal reasoning
paths.

B. Benchmarks

1) AIME-2024: The AIME 2024 benchmark is based
on the American Invitational Mathematics Examination.
The exam consists of 30 questions, each requiring an
integer answer between 000 and 999. This benchmark
is widely used to assess the mathematical reasoning and
problem-solving abilities of AI models. [?]

2) MMLU: The Massive Multitask Language Un-
derstanding (MMLU) benchmark is a comprehensive
evaluation tool designed to assess the performance of
large language models across a diverse array of subjects.

Within MMLU, the High School Mathematics cate-
gory focuses on evaluating models’ proficiency in topics
typically covered at the secondary education level. [?]

C. Algorithims

This paper examines 2 behavior probing algorithms
TS-Guessing [?] and Local Order Quiz [?].

1) TS-Guessing: Testset Slot Guessing (TS-Guessing)
[?] is a behavioral algorithm that evaluates contamination
based on the response of the model. It works by masking
a carefully chosen part of the question (or answer set)
and asking the model under test to predict the part of
the questions that were masked. By ensuring the masked
part is not something that can be easily intuited and
has a wide variety of possible answers, TS-Guessing
confirms that a correct answer by a model indicates a
high probability that the model has seen this question
before. TS-Guessing modifies the masking based on the
format of the question.

• Question Based: Question based TS-Guessing
masks a semantically pivotal portion of the question
with many possibilities and asks the model to fill
in the blank. This method is done for open ended
(ie not multiple choice) questions.
Since dataset AIME-2024 consists of open ended
mathematical questions we employ this method by
randomly masking one of the integers in the ques-
tion. The numerical nature of the question lends this
number masking method to the constraints imposed
by the authors of TS-Guessing, importance of the
masked attribute, and large number of possibilities,
making it a good candidate for masking.

• Question- Multichoice: Question- Multichoice TS-
Guessing masks an inncorrect answer of a multi-
ple choice question. The stipuluation of incorrect
ensures that a model cannot simply solve for the

correct answer, reducing false positives.
Since dataset MMLU consists of multiple choice
questions we employ this method by randomly
masking one of the incorrect answer choices.

2) Local Order Quiz: Local Order Quiz [?] is a
prompt-based method for detecting contamination in lan-
guage models by testing whether a model can remember
the sequential order of examples from a given benchmark
dataset. The prompt includes a dataset description, name,
data split, and four options (chosen as a hyperparameter),
so a random guess would achieve about 25% accuracy.
This quiz picks a target question from the dataset, and
the model is queried by choosing the next occurring
example out of four potential options. The description
used is typically one from the GitHub page or Hugging
Face page of the dataset, with the rationale being that if
the dataset is contaminated, so will the description.

D. Implementations

1) TS-guessing: As described in section III-C1, we
implement the Question based method on the AIME
dataset. This is done by randomly masking one integer
in the problem statement with equal probability.

For the dataset MMLU we use the Question multi-
choice method. This is done by randomly selecting an
incorrect option from the multiple-choice options and
masking it.

In both cases, the models answer is then compared
with the masked input and checked for exact match accu-
racy. Using exact matches with the author’s descriptions
of the algorithms and eliminates many false positives.
We don’t allow the model to reason as it could intuit a
number that allowed the problem to be solved simply or
neatly, allowing for a false positive result.

2) Local Order Quiz: The Local Order Quiz tech-
nique was used on the models in section III-A with
the AIME and MMLU datasets. For each quiz we first
selected a target question and its true next question. We
then sampled three random questions from elsewhere in
the dataset to action as distractor questions not adjacent
to the initial target. These four options were randomly
shuffled and labeled A-D for the model to choose from
based on a constructed prompt. We then parsed the
output using regex to extract the predicted letter and
compare it to the correct answer.

IV. RESULTS AND DISCUSSION

A. Model inference accuracies

To more holistically evaluate the contamination of
these models we first run inference on both models
with both datasets to establish a baseline accuracy.
We prompted the model to generate an answer with a
maximum of 4000 tokens, which was chosen due to our



4

hardware limitations. An answer was generated for each
question in the given datasets (100 for MMLU and 30 for
AIME), and the generated response would be compared
to the ground truth. This process would be repeated
five times with the average accuracy and the standard
deviation being reported. The results of this method are
described in Tab. IV-A.

Model AIME(%) MMLU (%)
QWEN-14B 22.67 ± 2.49 43.34 ± 5.59
Skyworks-8B 10.00 ± 3.65 39.60 ± 5.24

TABLE IV
ACCURACY RESULTS FOR QWEN-14B AND SKYWORKS-8B ON

AIME AND MMLU BENCHMARKS OVER 5 RUNS.

Our results differ from results reported by deepseek
in its seminal paper [?]. There they report an MMLU
accuracy of 69.7% on the same model for AIME-
2024 We hypothesize that this difference is multifaceted,
impacted by a difference in hyperparameters and the
stringency of the evaluation techniques. The maximum
allotted tokens for the output may not have been enough
for the models (specifically the distilled Deepseek) to
always reason their way to a correct answer for a given
question. Despite these differences, since we evaluate
using the same strategy on all models and datasets,
we argue that the relative accuracy between our results
in accurate and is still useful in providing a base for
contamination detection.

B. TS-Guessing Results
1) AIME-2024: The percent contamination results ex-

pressed as percentage of exact matched with the masked
portion of the question is shown in Tab V. The results

Model AIME Contamination (%) MMLU Contamination (%)
DeepSeek 17.998 ± 4.47 2.22 ± 0.59
Skyworks 4.666 ± 1.83 1.33 ± 0.33

TABLE V
AVERAGE CONTAMINATION (%) AND STANDARD DEVIATION OVER

5 RUNS TS-GUESSING.

show clear contamination of AIME on the deep seek
model. However, we argue that these result, while small,
indicate contamination on these benchmarks as with all
the answer choices available to guess it is statistically
unlikely that it’d be able to get any of them much less
more than one. Furthermore, based on observations, we
argue that this is a lower bound of contamination. This is
because often times the model would output the correct
answer to the problem asked or the letter of the masked
problem, leaving us unable to evaluate that problem fully.

C. Local Order Quiz Results
The results in Tab. VI show both models perform

slightly above random chance on MMLU, not suggesting

Model AIME Contamination (%) MMLU Contamination (%)
DeepSeek 33.33 27.00
Skyworks 36.67 26.00

TABLE VI
CONTAMINATION (%) LOCAL ORDER QUIZ

much, if any, real contamination. With AIME however,
both models show a moderately higher percentages than
random chance, which may indicate mild or moderate
levels of contamination. While these measurements are
not definitive of contamination, they do suggest the
potential of leakage or memorization.

V. CONCLUSION

Overall, detecting contamination is a complex and
multifaceted topic that has a variety of approaches with
different benefits and drawbacks. This survey identifies
three broad categories of algorithms that encompass
the tradeoffs between access requirements, detection
granularity, and precision. This survey has identified
three broad categories of algorithms. Behavior Probing
determines contamination by using models outputs under
masked or altered conditions. Similarity-Based detection
mechanisms measure lexical and semantic similarity be-
tween benchmark examples and a models training corpus
or outputs. Finally, Statistical Signal Analysis techniques
use internal model statistical patterns associated with
benchmark inputs or outputs to detect contamination. We
then further explore Behavioral probing techniques by
running both TS-Guessing [?] and Local Order Quiz [?]
on reasoning models. These results allow us to detect
statistically noticeable contamination in the AIME-2024
datasets on both the Skyworks and DeepSeek models. In
addition our results for MMLU raise cause for further
examination of contamination, even with the little con-
tamination detected. This is surprising because AIME
was the datasets the models preformed the worst on.
Overall these results argue for a mixture of contami-
nation detection algorithms that fully explore the dif-
ferent tradeoffs between access requirements, detection
granularity, and precision. In addition, we find it isn’t
only the ”well preforming” datasets that are likely to
be contaminated, further underscoring the importance of
testing and preventing data contamination in all datasets.

REFERENCES


	Introduction
	Categories of Detection Algorithms
	Methodology
	Models
	DeepSeek-R1-Distill-Qwen-14B
	Skywork-O2-Open-Llama-3.1-8B

	Benchmarks
	AIME-2024
	MMLU

	Algorithims
	TS-Guessing
	Local Order Quiz

	Implementations
	TS-guessing
	Local Order Quiz


	Results and Discussion
	Model inference accuracies
	TS-Guessing Results
	AIME-2024

	Local Order Quiz Results

	Conclusion
	References

