Analysis of Cache Compression via Clustering

Luciano Dagnillo
ECE 462/562
University of Arizona
Tucson, AZ, USA
lucianodagnillo@arizona.edu

Sophia Golota
ECE 462/562
University of Arizona
Tucson, AZ, USA
sgolota@arizona.edu

Abstract—This analysis realizes the benefits that can be
achieved through the utilization of dynamically clustered com-
pressed cache lines. The particular focus of this compression
application is Base-Delta-Immediate, or BDI, cache compression.
The implementation is based on a dynamic cache clustering
method introduced in relevant research papers and is modeled
through a processor simulator. Performance parameters includ-
ing workload runtime, compression ratio, hit and miss rates,
and cache access latency were to be compared between the BDI
compression simulation and the proposed method upon which
the simulation was modeled. Though there was not a thorough
analysis of these parameters, there was compression of the cache
observed in an 8A1 framework, which achieved a runtime of
roughly 3ms.

Index Terms—cache, cache compression, (dynamic) clustering,
clusteroids.

I. INTRODUCTION

Improving performance is always a key concern in the world
of computing. Processor performance has grown exponentially
since 1980 while memory performance has lagged behind,
resulting in a performance bottleneck with memory accesses.
Because the processor moves faster, memory requests are
generated at a rate greater than that which the main memory
can service. This issue has become increasingly relevant as
computer architects transitioned from designing single-core
systems to designing multi-core systems, thus further increas-
ing the amount of memory requests.

The integration of caches has helped to remedy this bot-
tleneck. Caches allow a processor to store frequently used
blocks of data in a location near the core, and service memory
requests at a higher frequency than main memory. This allows
for reduced power consumption when repeatedly accessing
frequently requested data, as the information does not have to
travel from the main memory each time. Large caches should
theoretically improve performance, as they limit the need to
retrieve data from the slower main memory. The limiting factor
is twofold; large, fast memory is difficult to manufacture, and
it suffers from diminishing returns - as cache storage capacity
increases, so does cache access latency.

To address the challenges presented by incorporating large
caches, modern computer architects utilize multiple cache
levels that decrease in size and access latency as their prox-
imity to the core increases. Multilevel cache approaches can
be further improved by compressing data in lower cache
levels, decreasing the size of the data stored in a cache,

Cecilia Quevedo
ECE 462/562
University of Arizona
Tucson, AZ, USA
ceciliaquevedo@arizona.edu

Jimmy Payan
ECE 462/562
University of Arizona
Tucson, AZ, USA
jimmypayan@arizona.edu

thus increasing its effective capacity. This helps optimize the
utilization of computer resources, as it allows more space to
be allocated to computing resources of the system. Clustering
is a specific method of cache compression, as it reduces the
storage required to encode similar data by only storing one
instance of the common data, alongside the differences.

This paper explores a solution to optimize system resource
utilization via cache compression. The project aimed to re-
produce a dynamic cache clustering method, as proposed
in Thesaurus [1] and Two dimensional cache compression
(2DCC) [2] using Base-Delta-Immediate (BDI) Compression
[3]. In this method, the base entry in a cache line is compared
to all subsequent entries to quantify the difference between
each entry and the base as a delta. If this delta falls within
the maximum tolerance of the chosen implementation, the
new compressed cache line comprises the base entry and
the sequential deltas. This technique was implemented with
a processor simulator, ZSim [9], and results were evaluated in
conjunction with the implementation of Thesaurus. In an ideal
scenario involving eight uncompressed words differing by less
than one byte, the maximum achievable compression ratio is 4
to 1. This scenario would allow 64B of data to be compressed
down to 15B; the 8-byte base and seven 1-byte deltas (dis-
cussed in III). Notable performance parameters between the
two methods, including workload runtime, compression ratio,
hit and miss rates, and cache access latency were compared
with those reported in Thesaurus.

Prior to simulation of the algorithm, various hypotheses and
predictions were made with regard to performance of BDI
compression: An ideal implementation of cache compression
should feature a high compression ratio alongside unaffected
hit rate, and a workload runtime, related to the cache ac-
cess latency. The theoretical maximum compression ratio of
BDI is 4:1, which is substantial. Hit rate should be entirely
unaffected by cache compression, assuming the replacement
policies implemented do not affect the integrity of the data
stored in the cache. Workload runtime and access latency are
somewhat related; if the cache can avoid a stall during data
compression/decompression, then overall runtime should be
the same. If a stall is required, compressed cache operations
will increase system runtime.

A successful implementation of cache compression [1], [2]
was found to reach compression ratios up to 2.25:1, at the cost
of reducing hit rate to 94.8%. Simulating the cache was the

most challenging aspect of the project: the simulator utilized
is optimized for research of many multi-core, multi-thread
computers in parallel, and introduced programming overhead
which prevented a working BDI algorithm from being simu-
lated. A non-BDI cache was found to have a workload runtime
sat of 3 x 10% ns, or 3 ms. As the experimental control, this
cache has a compression ratio of 1:1. Cache access latency
and hit rate were not measured.

II. RELATED WORK

Previous papers have analyzed various methods of com-
pressibility in caches, including frequent value compression
(FVCO) [7]. This method compresses the most frequently ac-
cessed data in a cache line, so that each cache line can hold
one uncompressed cache line or two compressed lines. Unlike
other compression techniques, FVC cannot group common
patterns in an application’s data, as the data must be identical
to all other entries in the cache line. Deduplication [4] can
be used to find identical cache lines and only store a single
copy. However, this can be potentially ineffective if there exist
few identical memory blocks. Using this concept, compression
techniques have been developed to find nearly identical cache
lines and store the differences.

Several papers have proposed a dynamic clustering method
[1], [5], [6] for cache compression. Dynamic clustering is
a compression technique that groups similar cache lines by
defining a “clusteroid” or “base” as a reference for storing the
differences of other cluster members. This method is designed
to adapt to varying workloads and data patterns, enabling the
system to handle different cluster sizes at runtime without
additional parameters. Reference [6] is an example of this
technique, where Alameldeen and Wood were able to develop
a cache compression policy that would dynamically decide
between compressed and uncompressed storage in a two-level
cache to increase cache size. This “frequent pattern-based”
compression could effectively double the size of a cache by
dividing the cache line into 32-bit words and checks before
comparing it to seven frequently occurring patterns. If the
data matches the pattern, each line is then compressed into
the pattern encoding, and the additional data is to decompress
the word. As this method can substantially increase latency,
they utilize an adaptive scheme that nullifies compression if
the latency from decompression outweighs the benefits of the
compression.

These compression and decompression latencies can be
mitigated to an extent by utilizing BDI compression [3], with
relatively modest hardware complexity. The idea behind BDI
compression is that for many caches, the values stored within
the cache line have very small differences, and as such a
cache line can be represented with a base value and array of
differences. Thesaurus and 2DCC demonstrate improvements
to last-level cache (LLC) efficiency while reducing hardware
overhead. 2DCC exploits two dimensions of redundancy, inter-
block and intra-block, to enhance cache compression effi-
ciency and performance [2]. Thesaurus builds upon 2DCC
to allow for dynamic clustering at the hardware level with

locality-sensitive hashing (LSH) [8] to produce the same hash
for similar blocks where a unique code is generated and used
to identify the blocks [8]. Only the difference is stored if
other memory blocks with the same code are already cached.
Thesaurus will then evict clusters that are not useful for
adapting to changing workloads and form new clusters over
time.

III. METHODOLOGY
A. Setbacks

The first iteration of this project sought to run an instance
of Thesaurus/2DCC on a core similar to an i5-750 intel
processor, with simulation occurring in ZSim. This action
item proved to be prohibitively difficult due to a lack of
detailed documentation throughout the research papers [1],
[2], repository “README” files, and source code itself. The
PARSEC benchmark test suite was the first choice for analysis,
due to its high number of memory accesses and ability to
run a few programs in parallel with varying cache access
patterns [11], which would substantiate the effectiveness of
compression on multiple cores.

The most notable difference between ZSim and Thesaurus
lies in their utilization of intel’s Pintools library. ZSim does
not concern itself with the specific data values stored within its
caches, though it does allocate the memory and write to the
correct locations. Thesaurus leverages certain pin functions,
specifically PIN_SafeCopy(), to read the values contained
within the caches of ZSim. Utilizing the same functions in
the BDI cache should grant access to the values in ZSim’s
caches.

Configuring ZSim was easier, with the caveat that it does not
natively support cache compression. The ZSim [9] simulator
is geared for researchers interested in conducting multiple
realistic processor simulations in a short time, making it ideal
for the research conducted by Ghasemazar et al. [1], [2].
Unfortunately, as the documentation is sparse, this required
a significant amount of time and attention dedicated towards
learning the ZSim environment.

B. Realization

Due to time constraints and issues with the obscurity of
the chosen simulator, the scope of the project was changed
to the more attainable goal of implementing the BDI cache
compression algorithm on a basic core. By narrowing the
scope of the project, confounding variables such as multi-core
performance should be mitigated. Thus, the decision was made
to rewrite parts of ZSim to allow for cache compression by
cross-referencing the Thesaurus and 2DCC repositories with
the ZSim repository. Additionally, PARSEC was determined to
be low priority until cache compression was implemented. In-
stead, testing would be carried out with snippets of C++ code,
which allows access patterns to be completely predictable.

The most simple processor supported by ZSim is a sin-
gle wimpy core with an L1 cache split between data and
instruction, and an L2 cache. This processor was modeled in
ZSim [9], an x86-64 multi-core simulator, and performance

parameters were analyzed through micro-benchmarking. Given
the increase in time overhead associated with the compression
and decompression of frequently accessed data, the last-level
cache was chosen for modification.

C. Base Delta Immediate Compression Algorithm

For this project, the team integrated BDI cache compression
into an instance of ZSim. Compression was obtained by
passing cache lines through a buffer before allowing them to
be entered into the cache. This buffer utilizes a BDI algorithm
to determine if the cache line can be compressed, and carries
out the compression if possible. For this project, the BDI
compression was specified to be 8A1. This indicates that each
entry and base are 8 bytes in size, and the maximum tolerance
between entries and the base (defined by A) is 1 byte.

Cache lines in this implementation have a line size of 64B,
corresponding to eight 8-byte entries. Once a cache line of
8B values (V1, Vs, ..., V%) from the buffer is found, the next
step is to verify compressibility for the chosen specification
(8A1). The first value in the cache line will act as the base
(By) with which the other values will be compared. If all of
the remaining values are within the limit of the byte difference
(A of 1, 2, or 3 bytes), then the line can be compressed. If
one value in the cache line has a difference greater than the
predefined A, then the line will not be compressed.

The compression method itself involves finding the differ-
ence between the 8-byte base and each other 8-byte entry in
a verified-as-compressible cache line and representing it as a
1-byte base offset (A). The new compressed cache line will be
stored as the base By with each consecutive delta A,, stored
sequentially, in place of the original line with B followed by
each 8-byte entry. The tag line will be stored in a tag array,
which notably requires additional pointers compared to an
uncompressed cache. This method can be modified to function
for any specified delta, or difference, as shown in Fig. 1 where
A is 3.

8-bytes
—
Vo Vi V2 V3 va V5 V6 \'Z4
A1 A2 A7
(V0-v1) (V0-V2) (V0-V7)
A4
v[¥ »
BO A1| A2| A3| A4| A5| A6| A7
— <~
8-bytes 3-bytes

Fig. 1. BDI Compression with 8B Base & 3B A.

If implemented correctly, the BDI cache should function
identically to a cache with increased storage capacity. Higher-
capacity caches feature both additional data and additional
tags. The BDI algorithm allows for compression of data within
the cache, and additional memory was allocated for tags to
properly index the cache. The amount of additional memory
required for these tags must reflect the best-case performance

scenario of the BDI cache; e.g. with a maximum compression
ratio of 4:1, each cache line (regardless of compression) will
have four tags associated with it instead of one.

Replacement policies are arguably the most complicated
aspect of BDI compression. Due to a compressed cache
featuring multiple line sizes, a careless replacement policy may
result in the eviction of many compressed lines in the event
that all “least recently used” lines are dispersed throughout
different data cache lines. This can be remedied by utilizing
a custom replacement policy that considers the size of the
data being inserted and prioritizes evicting blocks with lower
compression ratios; e.g. evicting a single 8A3 instead of two
8A1 blocks.

Another challenge associated with BDI compression is
maximizing the amount of data stored per line during runtime.
If possible, a compressed cache with a line size of 64 should
fill all 64 lines at all times. This is difficult during runtime
due to the constant nature of evictions, which results in data
being sub-optimally allocated. The proposed solution is to
periodically refactor the cache; this allows data to be entered
into the cache as tightly as possible as shown in Fig. 2.

64B Cache Line (Uncompressed)

8A2:22B 8A2:22B 8Al1:15B (5B
8A3: 29B 8A3: 29B 6B
8A3: 29B 8A2:22B 13B

Fig. 2. Various degrees of compression efficiency.

To decompress the cache line, the compression process is
reversed. The individual A,,, where n represents the number
of the delta in sequential order with relation to the others,
is added to the base value in order to obtain the original
entry and this process is repeated for the entire cache line.
This decompression is modeled with a delta of 3 in Fig. 3.
BDI decompression is not computationally expensive; it can
be performed in parallel and will add the latency of an adder
to the critical path [3].

1V. EXPERIMENTAL RESULTS
A. Experimental Setup

A ZSim configuration file used to implement the compres-
sion algorithm defined the system parameters as follows: a line
size of 64B, a 64B L1 cache, and a 256B L2 cache. A lack of
proper functional cache traces in ZSim presented a challenge
— to address this, an output file was added to the cache access

8-bytes 3-bytes
—A— S

BO A1| A2 A3| A4| A5| A6| A7

7

Fig. 3. BDI Decompression with 8B Base & 3B A.

function in order to track values accessed during runtime.
Similarly, a custom microbenchmark was utilized to allow for
a more precise view of cache access behavior. The open source
code of the ZSim processor simulator was modified to test this
created cache, using Data and Tag arrays defined for the cache
to later analyze access patterns, and replacement policies were
updated to track the movement/eviction of entries in the cache
line.

The replacement policy framework was kept fairly similar
to ZSim’s original setup. However, to handle proper data
replacement, a Data Replacement Policy class was added,
which includes a new array of boolean values and returns a
time stamp of the last time a data block was used and its
validity. Each boolean value indicates whether data is valid
and is to be modified by different functions. For instance,
the update() function in the original replacement policy only
updated the time stamp of the block, whereas the modified
function sets the indexed boolean value in the valid array to
true.

B. Results and Analysis

Table I portrays the different values observed for per-
formance parameters in both the 8A1l cache compression
method implemented for analysis and the dynamic cache
clustering methods discussed in Thesaurus [1]. Parameters
used for comparison include cache compression ratio, hit and
miss rates, workload runtime, and cache access latency. The
values recorded for Thesaurus’ hit and miss rates are for a
512-entry (33KB) cache, where the miss rates are evaluated
over all benchmarks. The corresponding values for the 8D1
method have been scaled accordingly, though hit rate was
unable to be measured. The compression ratio of Thesaurus,
which averaged 2.25:1 for last-level cache (LLC) working
sets, could be compared to that of the 8 Al method in a
proper implementation. A direct comparison would analyze
how Thesaurus’ compression behaved during the same micro-
workloads utilized for the team’s ZSim testing. On the other
hand, BDI’s hardware overhead should introduce lower relative
delays to the overall access latency; the compression identifi-
cation, as well as compression/decompression can occur on
adders, shift registers, and or gates, most of which are in
parallel .

TABLE I
8 A1 COMPRESSION VS. THESAURUS

Compression Performance Parameter
Method Ratio Hit Rate Runtime Latency
Thesaurus 2.25:1 94.8% 27.2% faster | 5 cycles
8A1 1:1 (non-BDI) N/A 3 ms N/A

V. CONCLUSIONS AND FUTURE WORK

This project details the merits of cache compression in
modern processors. It proposes an implementation of base-
delta-immediate cache compression, specifically 8D1, and the
hypotheses proposed, such as the run time performance of
the BDI cache and compression ratio, were confirmed by the
analysis through ZSim.

These cache compression algorithms would be best studied
in a simpler simulator, as ZSim is too robust for a single
instance of cache compression, therefore introducing more
problems than solutions during the implementation process.
A single core RISC-V processor simulator such as Chipyard
would have allowed more time to be dedicated towards the
BDI compression algorithm, rather than learning the details
of the simulator.

The implemented work can be further improved through an
interpretation of BDI compression utilizing multiple deltas that
encompass a range of differences rather than a single-constant
delta. An example of this would be implementing deltas 1-3,
where cache lines with differences of up to 3 bytes between
entries would be considered compressible, and compressed
data would be locally grouped with regards to the delta
magnitudes. This would improve the rates of compressibility,
and therefore meet the goals of cache compression more
precisely, but introduces complications in replacement policies
and loss of relevant data with eviction of least frequently
used compressed data. Additional follow-up research related
to cache compression should measure the impact dynamic
clustering has on silicon area. For these purposes, Cacti or
Verilog can be used to quantify the size of the hardware
required to implement clustering, as well as the additional
power consumption during workloads with high compression
ratios and high decompression rates.

REFERENCES

[1] A. Ghasemazar, P. Nair, and M. Lis, “Thesaurus: Efficient Cache
Compression via Dynamic Clustering,” in Proceedings of the 25th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Lausanne, Switzerland,
March 2020.

[2] A. Ghasemazar, P. Nair, and M. Lis, “2DCC: Cache Compression in
Two Dimensions,” in Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition (DATE), Grenoble, France, March
2020.

[3] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” in Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), Minneapolis, MN, USA, September 2012.

[4] T. Tian, M. Feng, and D. A. Jiménez, “Last-Level Cache Deduplication,”
in Proceedings of the 27th International Conference on Supercomputing
(ICS), Eugene, OR, USA, June 2013.

[5]
[6]

[7]

[8]

[9]

[10]

(1]

A. Bouchachia, “Dynamic Clustering,” Evolving Systems, vol. 3, pp.
133-134, August 2012.

A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression
for High-Performance Processors,” in Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA), Munich,
Germany, June 2004.

M. Zhang, K. Asanovi¢, and B. C. Catanzaro, “Frequent Value Com-
pression in Data Caches,” in Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Monterey,
CA, USA, December 2000.

M. Ghayoumi, M. Gomez, K. E. Baumstein, N. Persaud, and A. J.
Perlowin, “Local Sensitive Hashing (LSH) and Convolutional Neural
Networks (CNNs) for Object Recognition,” in Proceedings of the 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), Orlando, FL, USA, December 2018.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA),
Tel-Aviv, Israel, Jun. 2013.

D. R. Carvalho and A. Seznec, “Understanding Cache Compression,”
ACM Transactions on Architecture and Code Optimization, vol. 18, no.
3, pp. 1-27, June 2021.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Toronto, ON, Canada, October 2008.

